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Abstract
Here, we consider a two-level system driven by an external periodic field. We
show that the coherent destruction of tunnelling, as proved by Grossmann and
co-workers (1991 Phys. Rev. Lett. 67 516; 1992 Europhys. Lett. 18 571) in the
case of a monochromatic field, also appears for any periodic driving field given
by an even regular function with zero mean value and satisfying a technical
condition on the zeros of this function.

PACS numbers: 05.45.−a, 02.30.Sa, 42.50.Ar

1. Introduction

Driven two-level systems have been the subject of great interest since the works by Rabi who
solved the problem of a two-level spin system in a circularly polarized magnetic field [2]. At
present they appear in many fields, from theoretical physics to practical optics (see [3] and [8]
and the references therein). For instance, if one considers a one-dimensional quantum system
with symmetric potential and an external time-dependent field (see [5, 6])

i
∂

∂t
u(x, t) = − ∂2

∂x2
u(x, t) + [x4 − βx2]u(x, t) + Sxf (ωt)u(x, t), S, β > 0, (1)

it is well known that the autonomous Hamiltonian has two parity-even and -odd eigenstates
v± with eigenvalues λ±. The restriction of equation (1) to the bi-dimensional space spanned
by the two eigenvectors v± is usually called the two-level system and, in a suitable base, it
takes the following form:

iφ̇ = H1φ, H1 = εσ1 + ηf (ωt)σ3, φ(0) = φ0, (2)

where ε = 1
2 |λ+ − λ−| > 0, η is the real-valued parameter directly proportional to the
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field’s strength, φ̇ denotes the derivative of φ with respect to the time t,

φ(t) =
(

φ1(t)

φ2(t)

)
,

ω is the driving frequency, f (t) is a periodic function with period 2π and σ1,3 are the two
Pauli’s matrices:

σ1 =
(

0 1
1 0

)
and σ3 =

(
1 0
0 −1

)
.

If the external field is absent then η = 0 and equation (2) takes the form

iφ̇ = εσ1φ

with solution given by

φ1(t) = φ1(0) cos(εt) − iφ2(0) sin(εt)

and

φ2(t) = φ1(0) sin(εt) − iφ2(0) cos(εt).

Hence φ(t) is a periodic function with period 2π
ε

and the wavefunction u(x, t) shows a beating
motion between the two wells.

When we restore the driving field, one of the main addresses concerns the effect of the
coherent destruction of the tunnelling (also called dynamical localization). In a seminal paper,
Grossmann and co-workers [5, 6] pointed out that the beating motion in a two-level system can
be controlled, and even suppressed, by means of a tailored external monochromatic driving
field (9).

In this paper, we show that such an effect, that is the suppression of the beating motion
for critical value of the parameters, also appears for any even and periodic driven field f (ωt)

satisfying assumptions H1 and H2. More precisely, we are able to prove that (see the theorem
below) the integral Î defined in equation (6) is exactly zero for a suitable choice of the external
field’s parameters; from this fact and by means of the averaging theorem the destruction of the
beating motion follows.

2. Notations and main results

Here, we consider the two-level equation (2) where the actual semiclassical parameter is the
beating frequency ε.

For our purposes, it will be useful to write the original equation (2) in a different form by
means of the transformation

ψ = eiασ3φ

where

α(t) =
∫ t

0
ηf (ωξ) dξ. (3)

Then equation (2) takes the form

iψ̇ = H2ψ, H2 = ε eiασ3σ1 e−iασ3 , (4)

with the same initial condition ψ(0) = ψ0 = φ0.
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When the driving field is absent, that is η = 0, then equation (4) has a periodic solution
with period

T = 2π

ε
.

By means of the averaging theorem [9], in the limit of small beating frequency, that is
ε � ω, and for times of the order of the beating period T we can approximate the solution of
equation (4) by the solution of the average system given by

i ˙̂ψ = Ĥ 2ψ̂, Ĥ 2 = εÎσ1, (5)

where

Î = ω

2π

∫ 2π/ω

0
e2iα(t) dt = 1

2π

∫ 2π

0
e2iχ

∫ t

0 f (q)dq dt, χ = η

ω
. (6)

That is, the unperturbed solution ψ(t) is approximated by means of the solution ψ̂ related to
the averaged equation (5) for any time of the order 1/ε: for any δ > 0 there exists ε0 > 0 such
that for any ε, 0 < ε < ε0, then

|ψ(t) − ψ̂(t)| < δ, ∀t ∈ [0, T ]. (7)

It has been found that for a monochromatic driving force (see equation (9)) the
wavefunction φ is, for certain values of the field’s parameters, nearly ‘frozen’ in its initial
configuration [5, 6]; that is we have the dynamical localization effect as defined below.

Definition. Let ψ be the solution of equation (4) with initial condition ψ0, let T = 2π
ε

be the unperturbed beating period. The dynamical localization effect, also called coherent
destruction of the tunnelling, means that for any ν > 0 there exists ε0 > 0 such that for any
ε ∈ (0, ε0) then

|ψ(t) − ψ0|2 < ν, ∀t ∈ [0, T ]. (8)

From the average theorem it follows that we have dynamical localization if, and only if,
Î = 0 (actually, in [7], a general criterion has been given for dynamical localization which
also holds for non-periodic fields); furthermore, Î depends only on the ratio χ = η/ω between
the two field’s parameters. Therefore, if the monochromatic field has the form

f (t) = 1
2 sin(t), (9)

where η and ω are, respectively, the amplitude and the frequency of the external monochromatic
field then [1]

Î = J0(χ),

where J0(x) is the zeroth Bessel function. From this fact and since (5) has the same form of
equation (2) with η = 0 and ε replaced by εJ0(χ) it follows that when the external field’s
parameters η and ω are such that J0(χ) = 0 then the beating motion disappears and we have
dynamical localization.

Now, we show that such an effect generically occurs for a given periodic driven field f

provided that f (t) is an even and regular function. More precisely, we assume that

Hypothesis I. Let f (t) be a real-valued periodic function such that:

(i) f (t) is an analytic function on a complex strip R × i(−δ, +δ) for some δ > 0;
(ii) there exists t0 such that f (t0 − t) = f (t0 + t) for any t;

(iii) f (t) has mean value zero: 1
2π

∫ 2π

0 f (t) dt = 0;

(iv) f (t) satisfies to the normalization condition
∫ 2π

0 f 2(t) dt = 1.
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In the following let us assume, for the sake of definiteness, that t0 = 0.
Now, let

�n = {t ∈ [0, π ] : f (t) = ḟ (t) = · · · = f (n−1)(t) = 0, f (n)(t) �= 0}, n = 1, 2, . . . .

From assumptions I(ii) and (iii) it follows that there exists at least one t ∈ [0, π ] such that
f (t) = 0, from this fact and from the analyticity of f (t) it follows that such a zero t has a
finite multiplicity (otherwise f (t) ≡ 0 in contradiction with assumption I(iv)). Hence, there
exists n � 1 such that �n �= ∅; let

N = min(n : �n �= ∅) + 1.

From the analyticity of the function f (t) it follows that the set �N has finite cardinality; thus

�N = {tj , j = 1, . . . , m}, 0 � t1 < t2 < · · · < tm � π,

for some m � 1.

Hypothesis II. Let

γj = 2
∫ tj

0
f (q) dq, (10)

we assume that γj �= 0 for any j = 1, 2, . . . , m.

We can now state our main result.

Theorem. Let hypotheses I and II be satisfied. Then, there exists a critical value of the
parameter χ such that Î (χ) = 0. That is, we have dynamical localization for critical values
of the field’s parameters.

Remark 1. Let us underline that assumption I(i) could be easily weakened; for instance, it is
enough to assume that f (t) ∈ C∞ has finitely many zeros with finite multiplicity.

Remark 2. Assumption I(iv) is not really necessary, we just normalize f for the sake of
definiteness.

Remark 3. Assumptions I(ii) and (iii) are actually crucial. Indeed, if the mean value of f is not
zero then the driven field does not give the dynamical localization effect for any frequency ω,
but only for some resonance values (see section 4.2 in [7]). For what concerns assumption I(ii)
we now show an example of a driven field that does not satisfy such a condition and for
which the dynamical localization effect does not hold. To this end we consider the following
piecewise function:

f (t) =



1/a 0 � t < a

−1/(π − a) a � t < π

0 π � t < 2π,

where a �= 0 is given (actually the regularity condition I.i) does not hold; however this point
is not really crucial). In such a case, a simple computation gives

∫ t

0
f (q) dq =




t/a 0 � t < a

(π − t)/(π − a) a � t < π

0 π � t < 2π

and

Î = 1

2π

∫ 2π

0
e2iχ

∫ t

0 f (q)dq dt = 1

4χ
[2χ + sin(2χ)] + i

[
1 − cos(2χ)

χ

]

whose real part is different from zero for any χ since sin(x) < x for any x > 0.
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Figure 1. We plot the function Î (χ) for the driving field f (t) = [1 − cos(2t)] sin(|2t |). In such a
case it follows that Î (χ) �= 0 for any χ ; hence, the phenomenon of the tunnelling destruction does
not appear.

Remark 4. If hypotheses II is not satisfied then the theorem fails. For instance, let
f (t) = [1 − cos(2t)] sin(|2t |) with d = 2π (actually this function is not analytic at t = 0;
however this fact is not really crucial), in such a case we have that t1 = 0, t2 = 1

2π and t3 = π

with γ1 = γ3 = 0 and γ2 = 1. Then, in such a case it follows that

Î (χ) =
∫ π

0
cos[2χ(cos2(t) − 1)2] dt

and that Î (χ) �= 0 for any χ (see figure 1).

3. Proof of the theorem

In order to prove the theorem we give the following preliminary result.

Lemma 1. We have that

Î (χ) = χ−1/Ng(χ)[1 + o(1)], as χ → +∞,

where

g(χ) =
m∑

j=1

αj cos(γjχ + ϕj ) (11)

with γj defined by (10), for some N � 2,m � 1 and for given parameters αj �= 0 and
ϕj , j = 1, 2, . . . , m.

Proof. Since f (t) is an even periodic function it follows that:

Î = 1

2π

∫ π

−π

e2iχ
∫ t

0 f (q)dq dt

= 1

2π

[∫ 0

−π

e2iχ
∫ t

0 f (q)dq dt +
∫ π

0
e2iχ

∫ t

0 f (q)dq dt

]

= 1

2π

[∫ π

0
e−2iχ

∫ t

0 f (q)dq dt +
∫ π

0
e2iχ

∫ t

0 f (q)dq dt

]

= 1

π
	

[∫ π

0
e2iχ

∫ t

0 f (q)dq dt

]
.
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The stationary phase method (see equation (A.1) in the appendix) gives∫ π

0
e2iχ

∫ t

0 f (q)dq dt = χ−1/Nh(χ),

where

h(χ) = 2

N
�

(
1

N

)(
N !

2

)1/N m∑
j=1

cj |f (N−1)(tj )|−1/N

× exp

[
i

π

2N
δj + 2iχ

∫ tj

0
f (q) dq

]
[1 + o(1)], as χ → +∞,

and

δj = sgn[f (N−1)(tj )] and cj =
{

1 if tj ∈ (0, π)
1
2 if tj = 0, π.

Hence,

Î = χ−1/Ng(χ)[1 + o(1)], as χ → +∞,

where g(χ) is given by (11) with γj given by (10) and

ϕj = π

2N
δj , αj = 2

Nπ
�

(
1

N

)(
N !

2

)1/N m∑
j=1

cj |f (N)(tj )|−1/N .
�

Now, we consider the equation g(χ) = 0 where we prove that it has arbitrarily large
solutions. More precisely, we prove that

Lemma 2. Let g(χ) = ∑m
j=1 αj cos(γjχ + ϕj ), where αj , γj �= 0, j = 1, 2, . . . , m, then for

any ζ > 0 there exists χ > ζ and χ± > ζ such that g(χ) = 0 and ±g(χ±) > C for some
C > 0 independent of ζ .

Proof. Let

� = {γ1, γ2, . . . , γm}
and we set � = �1 ∪ ��

1, where �1 ∩ ��
1 = ∅ where

�1 =
{
γ ∈ � :

γ

γ1
∈ Q

}
and ��

1 =
{
γ ∈ � :

γ

γ1
∈ R − Q

}
.

Let now g(χ) = g1(χ) + g�
1(χ) where

g1(χ) =
∑

j=1,..,m;γj ∈�1

αj cos(γjχ + ϕj )

and

g�
1(χ) =

∑
j=1,..,m;γj ∈��

1

αj cos(γjχ + ϕj ).

By definition, it follows that g1(χ) is a periodic function with period T̃ , where

T̃ = min

(
T :

T γj

2π
= nj ∈ N, γj ∈ �1

)
,

furthermore ∫ T̃

0
g1(χ) dχ =

∑
j=1,..,m;γj ∈�1

∫ nj 2π/γj

0
αj cos(γjχ + ϕj ) dχ = 0.
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Hence, there exist χ̂ , χ̂± ∈ [0, T ) such that

g(χ̂) = 0 and ±g(χ̂±) > C

for some C > 0. Now let

χ� = χ̂ + �T̃ and χ±
� = χ̂± + �T̃ , � ∈ Z.

If ��
1 = ∅ the proof is completed. If not, we recall that the frequencies of ��

1 are
incommensurate with the frequencies of �1. Hence, for any ε > 0 we can extract a subsequence
χ̂±

�r
from χ̂±

� such that∣∣αj cos
(
γj χ̂

±
�r

+ ϕj

)∣∣ < ε,∀r,∀j : γj ∈ ��
1.

In particular, if we choose

ε = min

( |g1(χ̂
±)|

2m

)

then it follows that:

g
(
χ̂+

�r

) = g1(χ̂
+) +

∑
j=1,..,m;γj ∈��

1

αj cos
(
γj χ̂

+
�r

+ ϕj

)

� g1(χ̂
+) − mε >

1

2
C

and

g(χ̂−
�r

) = g1(χ̂
−) +

∑
j=1,..,m;γj ∈��

1

αj cos
(
γj χ̂

−
�r

+ ϕj

)

� g1(χ̂
−) + mε < −1

2
C.

The proof is complete since, by means of a continuity argument, some χ between χ−
�r

and χ+
�r

such that g(χ) = 0 exists. �
We can conclude the proof of the theorem. Indeed Î is a real-valued continuous function

such that ±Î (χ±) > 0 provided that χ± are large enough. From this fact a continuity argument
implies that Î (χ) = 0 for some χ between χ− and χ+.
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Appendix. The stationary phase formula

Here, we recall the following result for the asymptotic expansion of the integral:

I =
∫ b

a

eiλφ(t)f (t) dt, as λ → +∞,

where f and φ are smooth functions, a < b are given and

φ̇(c) = · · · = φ(n−1)(c) = 0, φ(n)(c) �= 0, n � 2, φ̇(t) �= 0,

t ∈ [a, b], t �= c,

for some c ∈ (a, b) and f (c) �= 0. Then (see equation (6.1.12) in [4])

I = 2f (c)�(1/n)

n

[
λ|φ(n)(c)|

n!

]−1/n

exp{iλφ(c) + i sgn[φ(n)(c)]π/2n}[1 + o(1)],

as λ → +∞. (A.1)
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